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0 if —Seq(a),
I if Seq(a) & lh(a)=0,
(B) Vay(@a)= (7(a))n*25+f if Seq(a) & lh(a) #0 & o(((a)) p*25+1) =0,
(?(a)) 8*2”((’!0\))3)4- 1
if Seq(a) & Ih(a) #0 & a((3(a)) p*25+1)£0

where B is ITj )2 P{*" and S is (a)ay-, 1. If in (B) we use a(0)
for a (via V-elim.), the second case applies and gives y(&(0)) =
Y(1) = 1 (using *23.5, x23.1, *BJ). If in (B) we use &(x’) for a, then
the third or fourth case applies; furthermore using *23.4, *23.2, *23.8
ete., B=&(x), S=a(x), &(x) = a = B-p$*! = Ba2S+l=g(x)s220+1,
so B <a (using *143b, *3.10 etc.) and (F@a))s = v(B) = 1(a(x))
(by *24.2). Now by ind., using (2) in the basis, and («) to deal with
the fourth case of (8) in the ind. step,

v) oly(@x))=0.
Let “a,” abbreviate At(y(a(t')));—1. Now we deduce by induction

@) ax)=v(&(x)).

Basis: trivial. IND. STEP. a (x') =  (X)p2(r @M=D+ 223 8 x0,]]
= y(&(x)p2ACEEM=DEL (hyp ind.], which (using (y(a(x))*2A+1), =
(e, (x)%2A+1)x [hyp. ind.] = A+1), if the third case of (B} applies to
a=a&(x’), = y(&(x))*2*=*! = y(a(x’)) {if the fourth case applies,
= Y(&())#2" "M = y(3(x'))}. — By (y) and (3),

() «€0.
We also deduce by induction
€  o@(x))=0 > y(a(x))=a(x).

IND. STEP. Assuming o(&(x'))=0, the third member of (1) gives
a(@(x))=0, so by hyp. ind. y(&(x))=&(x), and the third case of (B)
applies. — By (8), (), *23.2and *6.3, o(&(x")) =0 D a,(x) =a«(x), whence

(n) a€oDa,=a.

II. Assume also the remaining hyps. (3)=(6) of *26.4a. We shall
apply *26.3a with R(y(a)), A(y(a)) as the R(a), A(a). If we can then
verify the four hyps. of x26.3a, the concl. of *26.4a will follow using
Y(1)=1 (in I). We get the first hyp. by () with (3) (using *23.6 to
put a=&(x) preparatory to 3-elims.). For the second, by (¢} and (4)
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IxR(x (x)), whence by (8) IxR(y(&(x))). We get the third (putting
a=4a(x)) by (y) with (S). For the fourth, assume Seq(a) & VsA(y(a®28+1)),
By (y) with *23.6, o(y(a)) =0. Put x=1h(a). Assuming o(y(a)*28+1)=0,
and using *22.8, *22.5, *23.6 to put a*28*1=&(y) (then y=x’ [*22.8,
*20.3, *23.5], a-pit! = as28+l [x21.1 etc] = &(x') = &(x)-pE=+1
[*23.8], so s=a(x) [*19.11, *22.2, *(9.9, *6.3] and a=a(x) [*133)]),
the third case of (B) applies to &(x’) and gives v(&(x")) =y(a)*28+1,
so VsA(y(ax28+1)) gives A(y(a)*25+1); thus Vs{a(y(a)*25+1)=0 >
Afy(a)«2e+1)}. By (6), A(y(a)).

6.10. From his bar theorem Brouwer inferred his “fan theorem’
(implicit in 1923a p. 4 (II); 1924 Theorem 2; 1927 Theorem 2: 1954 §5).
A “finite set” or “finitary spread”, most recently called a fan, is a
spread in which each choice must be from a finite collection of numbers.
Say eg. that, for £ =0, 1,2, ..., the number «{f) must be chosen
from among O, 1, ..., f(a(®)); i-e. (Ha(t)<P(&(?)). We shall here be
considering only the choice sequences underlying a fan, which con-
stitute a fan by taking for the correlation law p the trivial correlation
p(a(x’)) = a(x). According to one version of the fan theorem (classically
true), if, for all choice sequences « restricted to this fan (determined
by B), (Ex)R(&(x)), then there is a finite upper bound z to the least
x's for which R(&(x)). In this “‘pure” version, symbolized by *26.6a
(or *26.6b-*26.6d), we can prove the fan theorem from the bar
theorem with no further postulate. Another version *27.7 (classically
false), favored by Brouwer, will follow from this by the new intu-
itionistic postulate X27.1 of § 7. A classical contrapositive of the present
version is Konig’s lemma 1926, which we shall give in Remark 9.11.

First, we give a proof of the present version of the fan theorem
informally. Consider any sequence number a belonging to the given
fan, i.e. representing a finite choice sequence belonging to that fan;
by the subfan issuing from a we mean the fan of those choice sequences
« by which a can be extended in the given fan, i.e. such that, for each x,
the sequence number a+a(x) represents a finite choice sequence
belonging to that fan. We apply Brouwer's 1927 Footnote 7 in 6.5
above, but considering only sequence numbers not past secured
belonging to the given fan: “for every s (s =0,1,2,...)" becomes
“for every s < f{a)”". We use the corresponding form of induction
to prove as follows that, under the hyp. of the fan theorem for the
given fan and the given predicate R, the conclusion of the fan theorem

P4 Leo



60 FORMAL INTUITIONISTIC ANALYSIS CH. 1

holds for the subfan issuing from any sequence number a = é(y)
securable but not past secured (in the given fan with respect to the
given R) and the predicate Aw R(a%w). The subfan iIssuing from a
sequence number a such that R(a) has 0 as a z for the fan theorem.
Consider a sequence number a whose securability follows from that
of all a%2¢*1 for s < f(a); by the hyp. ind., for each s < f(a) the
subfan issuing from a*28+1 has a z, call it z,, for the fan theorem.
So the subfan issuing from a has I +max(zg, ..., 25,) as a z for the
fan theorem. This completes the induction. But under the hyp. of
the fan theorem, 1 is securable but not past secured. So the conclusion
of the fan theorem holds for the subfan issuing from 1 and the pred-
icate dw R(l*w), i.e. for the given fan and R.

This is easily pictured geometrically. Our fan is represented by a
tree in which from each vertex, occupied by the sequence number a,
finitely many arrows (namely B(a)+! of them) lead to vertices,
occupied by ax20+1, ..., ax2#@*1 This is illustrated by Figure 1 in
6.5 for the case (a)[f(a)=2] (the binary fan), where now we are not to
imagine arrows for s > 1. Again consider a predicate R{a); and
suppose that, for each «, we underline the first &(x) (if any) for which
R(a(x)). Figure I illustrates a case in which (a) (Ex)R(a(x)). To simplify
terminology, let us suppress in each branch all vertices to the right of
an underlined &(x); so in Figure | only the part of the tree printed
in bold face remains. The hypothesis of the fan theorem then says
that all paths are finite. The conclusion says that there is a finite upper
bound to their lengths. The proof is by induction, corresponding to the
inductive definition of the class of the securable (but not past secured)
sequence numbers a (6.5, but now in the fan rather than in the uni-
versal spread). The induction proposition is that there is a finite upper
bound to the lengths of paths in the subtree issuing from a. As basis
of the induction, this upper bound is | (the z is 0) for a at the end of
any branch. As induction step, in proceeding leftward from all ax2s+1
(s =0, 1 in Figure 1) to a, we graft finitely many subtrees (2 in our
Figure 1) with respective finite upper bounds onto @ to obtain a
subtree with upper bound the maximum of the respective upper
bounds increased by one.

In formalizing this proof, we first prove a lemma *26.5, in which
b, s, z, w are any distinct number variables, and B(s, z) is any formula
not containing b, w free in which w is free for z.
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*26.5. VsVzVw([B(s, z) & w>z D B(s, w)]
F ¥s,.,32B(s, z) D 32¥s, ., B(s, z).

Proor. We assume (a) VsVzVw(B(s, z) & w>z 5 B(s, w)], and
deduce the rest by ind. on b. IND. STEP. Assume Vs,<p-32B(s, z),
whence 3zB(b', z) and Vs, ,3zB(s, z). By hyp. ind., 3zVs, ., B(s, 2).
Assume for 3-elim., B(b’, z;) and Vs, ,B(s, z2). Using (a) and *8.4,
B(b’, max(zy, z2)) and Vs, B(s, max(z), z2)), whence
Vs,<»-B(s, max(zy, z2)), whence 3zVs,,.B(s, z).

*26.6a. F Va[Seq(a) D R(a) V ~R(a)] & Vay,IxR(&(x)) D SRR
IzVay,,3x, ., R(@(x)) §() s bewo
where B(a) is Vta(t) <B(a(t)). dackec

¥26.6d. F Vap,3x[R(a(x)) & Yy, .,~R(a(y))] o
3z¥ep (o) I%x <5 [R(E(x)) & Vy; R (E(Y))].

PROOF OF *26.6a. I. B(x) does indeed restrict « to a non-empty
spread. For, we can introduce a function variable ¢ so that the
following formula (a) holds. Specifically, using #22, #D, #E, etc.,
the right member of (a) is equivalent to p(a}=0 for some term p(a)
(with F p(a)<1). Using Lemma 5.3 (a), assume preparatory to 3-
elim. Va[s(a)=p(a)]. Thence

() Va[o(a)=0 ~ Seq(a) & Vt, jnya), = <B(I;,p{*™")].
(The following also proves *26.6a’ in which the “Seq(a)” of *26.6a
is replaced by the right side of (a).) By *23.2, *23.4, *23.5 and *6.3,
(b) o(&(x))=0 ~ Vt, . a(t) <B(x(t)).
Thence
() B(ex) ~ acs.
Furthermore, the first two hyps (1) Spr(s) (using O for the s in the
second member) and (2) o(1)=0 of *26.4a now hold.

II. We shall apply *26.4a with the present ¢ and R taking A(a)
as follows.
A(a):  JzVe[Vta(t) <B(asa(t)) D Ix, . R(axz(x))].

With this A(a), the concl. 3zVay,, 3x, ., R(&(x)) of *26.6a will follow
from A(1) by *22.7. So it will suffice, assuming the two hyps. of
*26.6a, to deduce the other four hyps. (3)-(6) of *26.4a. The next
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three (3)-(5) we quickly obtain (with 0 for the z in (5)). To deduce
(6), assume (d) o(a)=0 and (e) Vs{o(ax28+1)=0 > A(a*28+1)}; we
must deduce A(a). Using (d), (a) and *23.6, we can put (for 3-elims.)
(f) a=8(y). Then by (d) and (b): (g) Vi, ., 8(t) <B(5(t)). We shall deduce
AB(y)), . zV¥a[Via(t) <B(S(y)*a(t) D Ix, ,R(S(y)*a(x))].

A. Assume (h) s<P(5(y)). Using *23.6 with *22.5 and *22.8, we
can put (for 3-elims.) §(y)*28+1=§"(u), whereupon (by *23.5, *22.8,
*20.3) u=y’, so §(y)*x25+1=§"(y’). By *23.2, x21.1, *19.11 with *23.3
and *19.9, 8'(y)=s; with *23.2 and *19.10, t<y D §'(t)=3(t); hence
by *B19 with x23.1, t<y o §(t)=5(t). Now (8) and (h) give
Vit . -8°(t) <B(¥'(t)), whence by (b) o(3" (¥')) =0, whence a(§(y)*28+1) =0,
whence by (e) and (f) A(§(y)28+1), i.e. zVa[Vta(t) <B((S(y)*28+1)*
&(t)) D Ix, ., R((§(y)*25+1)x&(x))]; call this formula 3zB(s, z). By
the Ju- and 3%"-elim., and - and V-introd., Vs, <pisiyndzB(s, z). But
B(s, z) has the property expressed by the assumption formula of
*26.5. Hence I2Vs, < g5y B(s, 2).

B. Assume (for 3-elim.) Vs,_4,,B(s, 2), and Vta(t) <B(6(y)*&(t)).
Now «(0) <B(8(y)), and so B(«(0), z), i.e. Va'[Via'(t) <B((8(y) %20+ )«
@'(t)) 3 Ix o, R((S(y)#27+ )#a’(x))]. Let “a™ abbreviate Ata(t’).
Then «'(t) = a(t') [x0.1] < B(8(y)*a(t')) = Bd(y)x(@(1)#a’(t))) [*23.7)
= B2V wa'(t)) [*22.9]); so Vtw'(t) <B((S(y)*2* aar(t)).
So from B(«(0),z), 3x, R((§(y)+22O* Vax'(x)). Assume x<z &
R((3(y)#2* )xa'(x)). Thence x’'<z’& R(S(y)+&(x’)), whence
Ix; .- R(5(y)*&(x)). By the Ix-elim., o-, V- and 3z-introd., and the
Jz-elim., 3zVa[Vta(t) <B(§(y)*x(t)) D Ix, ., R(8(y)*a(x))).

More generally, the choices permitted for «(f) in a fan need not be
a non-empty initial segment of the natural numbers. The choice law
is then a function ¢ satisfying the first two hypotheses of :

*26.7a. F Spr(o) & Va[s(a)=0> 3bVs{c(a+28*1)=0Ds<b}] &
Va[o(a)=0> R(a) VaR(a)] & Vo, IxR(&(x))
o EIzVamEIxxsz R(&(x)).

ProoF. Cask 1: ¢(1)#0. Then qaeo. Use *10a. (The fan is empty
and the theorem holds vacuously.)

Cast 2: o(1)=0. Assume the four hyps. (1')=(4) of *26.7a.

I. We have the first two hyps. (1) and (2) of *26.4a, so we can
introduce = and y as in I of the proof there and (x)~(n) will hold.
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I1. Using 6(a)=0V o(a) %0 and (2'), Vadb[a(a)=0D Vs{o(ax28+1)=Q
D s<b}]. Applying *2.2, we may assume for 3-elim.

(0) Vala{a)=0 2 Vs{o(a*25+1) =0 5 s <B(a)}].

ITI. We shall apply *26.6a for the 8 of (6) (entering into B(x)) with
R(y(a)) (for the y of I) as the R(a).

A. First we verify that the concl. of *26.7a will then follow from
the concl. 3zVay,,3x, ,R(y(@(x))) of *26.6a. Assume for 3I-elim.
(1) Voapdx;,R(y(&(x))). Assume (x) aco, whence o(&(t))=0 and
o((t'))=0. But &(t')=&(t)x2*"*1. Applying (0), «(t)<p(a(t)); and
by V-introd., B(«). Hence by (1), 3x,,R(y{(&(x))). Omitting 3x for
J-elim., we have x<z and R(y(&(x)));: by (x), a(&(x))=0. So by (%),
R(a(x)). By &-, 3- and >-introd., (completing) the 3x-elim., V- and
3-introd., and the 3z-elim., 3zV«,  Ix, ., R(&(x)).

B. It remains for us to verify the two hyps. of *26.6a. For the first,
assume Seq(a), and put a=&(x). By (y) o(y(&(x)))=0, so by (3
R(y(a)) V aR(y(a)). For the second, by (¢) and (4) 3xR(,(x)), whence
by (3) 3xR(y(a(x))), whence by *11 B(e) D IxR(y(&(x))), whence by
V-introd. Vag, 3xR(y(&(x))).

6.11. We now formalize the induction principle in the bar theorem
for inferring a property 4 of any barred sequence number w (cf.
6.6 s 2,3). This gives us an axiom schema modelled directly on
Axiom Schema 13 for ordinary induction. In this the implication
of an inductive by an explicit sense of securability, barredness, etc.
(i.e. the reversal of direction, 6.5 9 1), which is the kernel of the bar
theorem, enters thus: the conclusion of the induction that each barred
sequence number w has the property A is formulated using the explicit
sense of ‘barred’. The intuitionistic restriction on the predicate R
with respect to which numbers w are barred we give as a preliminary
hypothesis, in two forms. (For a classical result, corresponding to
*26.1, we may omit the first hyp. of x26.8a.)

*26.8a. Va[Seq(a) D R(a) V-R(a)] &
Va[Seq(a) & R(a) D A(a)] & Va[Seq(a) & VsA(a*28+1) 5 A(a)] D
{Seq(w) & YadxR(wx*&(x)) D A(w)}.

X26.8¢c. VaVxVy[R(x(x)) & R(a(y)) o x=y] &
Va[Seq(a) & R(a) D A(a)] & Va[Seq(a) & VsA(a*28+1) D A(a)] D
{Seq(w) & VadxR(w*&(x)) D A(w)}.



